Earthworms, Soils and N-Cycling in Remnant Forest Patches in the Baltimore Metropolitan Area Katalin Szlávecz¹, Sarah Placella¹, Rich Pouyat²,Vincent Giorgio³, Peter Groffman⁴, and Csaba Csuzdi⁵ #### Introduction Urbanization is the most prevalent land-use change today. It affects soil and soil fauna via habitat fragmentation, species introduction, changes in local climate, resource availability, and pollution. Earthworm invasion is one of the most visible change in soil invertebrate community structure. #### Research Questions - Are urban and rural forest soils different with respect to soil characteristics, and earthworm - Does urbanization affect N mineralization and #### Methods Earthworm extraction: mild formaldehyde solution Fixation: 4% formaldehyde solution Potential N-mineralization and potential nitrification rates: Incubation at 17 °C, 21 days, colorimetry ### ¹The Johns Hopkins University, Baltimore, MD, ²USDA Forest Service, Northeast Station; ³State University of New York, Syracuse NY, ⁴Institute for Ecosystem Studies, Millbrook, NY; ⁵Hungarian Museum of Natural History, Budapest #### Results #### Soil data #### Summer 2001 | | Bulk
Density
(g/cm³) | %
Organic
Matter | %
Sand | %
Silt | %
Clay | Soil
K
(ppm) | Soil
Ca
(ppm) | Soil
Mg
(ppm) | Soil
Na
(ppm) | Leaf
Litter K
(ppm) | Leaf
Litter Ca
(ppm) | Leaf
Litter Mg
(ppm) | Earthworm
Biomass
(g/m²) | |----------|----------------------------|------------------------|-----------|-----------|-----------|--------------------|---------------------|---------------------|---------------------|---------------------------|----------------------------|----------------------------|--------------------------------| | Urban | 1.19 | 7.1 | 42.0 | 46.5 | 11.4 | 13.90 | 106.4
6 | 30.14 | 1.21 | 10.81 | 118.98 | 17.11 | 27.1 | | Suburban | 1.03 | 9.1 | 51.9 | 35.7 | 12.4 | 19.66 | 93.85 | 18.83 | 1.49 | 12.14 | 118.84 | 15.25 | 21.3 | | Rural | .97 | 9.4 | 48.7 | 37.3 | 13.9 | 17.49 | 25.29 | 9.19 | .96 | 13.22 | 75.86 | 20.47 | 29.4 | Significant differences (ANOVA, Tukey's LSD, p<0.05): bulk density, Ca, Mg, Na #### Fall 2002 | | Soil Moisture
(%) | рН | Conductivity
(mV) | Leaf Litter
Thickness
(cm) | |-------|----------------------|-----|----------------------|----------------------------------| | Urban | 24.6 | | 131 | | | Rural | 26.3 | 4.7 | 147 | 2.5 | Jackland Legore Sites are separated by soil type (parent material) #### Species list: Aporrectodea caliginosa - Europe Aporrectodea limicola - Europe Lumbricus terrestris - Europe Lumbricus friendi - Europe Dendrobaena octaedra - Europe Octolasion lacteum - Europe Amynthas hilgendorfi - Asia Diplocardia patuxentis - North America #### Earthworm data # Results (Continued) Potential N Mineralization #### Conclusions Urban and rural forest soils form two distinct categories. Urban forest soils have greater - ■Potential N mineralization and potential nitrification - ■Earthworm density and earthworm biomass Differences in parent material confound the determination of urban effects #### Acknowledgements