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Introduction
Hedonic analysis is an econometric method that is used to disaggregate housing prices 
into a schedule of marginal, unobserved, implicit attribute prices (e.g. the marginal 
value of a fifth bathroom) . Because housing prices capitalize the value of 
surrounding amenities, hedonic analysis has frequently been used to value marginal 
willingness to pay for environmental goods and services, such as trees, views, open 
space, protected areas, clean water, and clean air. Because of its usefulness in 
deriving such values, hedonic studies are a common source of data in ecosystem 
service valuation.

One common assumption of  the hedonic model—and with regression modeling in 
general—is that the relationship between price and attributes is globally constant 
across the extent of the modeled population.  In some cases this is appropriate, but in 
others spatially static model parameters serve to obscure local heterogeneity. When 
that variation is great, this can lead to misleading results.   

This is a particularly salient point in modeling housing markets because the 
relationship between price and many housing attributes is clearly non-stationary. For 
example, the marginal implicit price of an additional bedroom is likely to vary from 
one neighborhood to the next. In some cases this spatial variation in a marginal 
attribute price can be controlled for without taking a non-stationary approach, simply 
by adding a variable that proxies space, such as distance to employment centers. In 
others cases, however, not enough variables can be operationalized within a stationary 
model to control for that spatial heterogeneity because of the elusive factors that 
define “place,” in which case a spatially non-stationary modeling approach may be 
preferable. In the latter case, a geographically non-stationary modeling method can 
help to elucidate the local variation that would otherwise be obscured by a global 
model. Moreover, it is an excellent method for diagnosing patterns or patchiness that 
may be otherwise undetectable and for isolating and defining the elusive boundaries 
of housing submarket—that is, geographically contiguous areas where price-attribute 
relationships remain relatively constant. 

Abstract
This research, which is part of the Baltimore Ecosystem Study, analyzes housing transactions in West Baltimore to determine whether there is spatial variability in willingness to pay for proximity to environmental amenities, including trees and parks, using an expanded form of hedonic analysis called geographically weighted regression 
(GWR). GWR is a regression method that allows parameter estimates and test statistics to vary continuously over space. By enabling such spatial variability, we can visualize spatial patterns in complex socio-economic relationships and assess how valuations of environmental amenities change over space. Moreover, we can use this 
information to help visualize and delineate socio-economic patches, or areas where these relationships are homogeneous. The study finds that valuations of tree cover and proximity to parks is spatially non-stationary within the study area. 

Background on Geographically Weighted Regression
In this study, Geographically Weighted Regression (GWR) (designed by 
Fotheringham et al. 2000, Fotheringham et al 2002, who built upon the works of 
Hastie and Tibshirani 1990 and Loader 1999, ) was used to generate non-stationary 
parameter estimates of the relationships between housing price and attributes in West 
Baltimore. In particular, it was hoped to determine whether marginal willingness to 
pay for proximity to environmental amenities—and the ecosystem services they 
deliver—varies across space in a way that cannot readily be explained through 
inclusion of control variables in a global model. The amenities that were looked at 
were trees and parks.  

GWR is a non-stationary regression method that uses the formula

where α and β vary continuously as a function of location (u,v)  at each point i, 
unlike in a global regression model where parameters are constant. In this case Y(x) is 
housing price function, xk is a vector of attributes and Beta is vector of parameters 
whose value is a function of location. 

In this method, separate regressions are run centered on each observation, with a 
spatial kernel determining which observations are included  in the population of each 
individual regression and how they are weighted, based on a Gaussian distance decay 
function. An adaptive or fixed size kernel can be used to determine the number of 
local points that will be included, depending on the spacing of the data. For this 
project, adaptive kernels were used since the data were not evenly distributed. The 
method used to determine optimal bandwidth was minimization of the Akaike
Information Criterion (AIC)

where tr(S) is the trace of the hat matrix and n is the number of observations.
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Methods
Property data for West Baltimore were obtained from Maryland Property View, ranging 
from 1992-2000. Data were assigned numerous spatial attributes, such as distance to 
highways, subway stops, parks and trees (tree canopy data were derived from IKONOS 
satellite imagery as part of the Strategic Urban Forests Assessment Project [Irani and Galvin 
2002]) and elevation. Additionally block-group level socio-economic attribute from the 
2000 Census were assigned, such as median household income and percent vacancy. Finally, 
structural attributes were assigned from the Property View data set, including assessed 
improvement value, number of bathrooms, building material, single family or multi-family, 
and age of structure. 

Once attributes were coded, log-transformed price was regressed against these 14 variables 
using GWR software (Fotheringham et al. 2003). The model output allowed for testing of 
the global model for improvement against the local model. It also allowed for testing of each 
parameter for global significance and for local spatial variability. Model output included a 
GIS point file of the observations with parameter values and t statistics for each point 
(representing the results of the individual kernel –based regressions centered on each point). 
These were plotted  to look for spatial patterns in the coefficients and t statistics on predictor 
variables, particularly distance to trees, distance to parks and the dummy variable for trees 
within ten meters. 
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Results
Several statistics indicated that the local model offered a significant improvement in fit 
over the global model, including the change in the Akaike Information Criterion 
(AIC[global]=1234, AIC[local]= 869) and an ANOVA (F=6.0167) testing the null 
hypothesis that the local model offers no improvement over the global. R-squared 
values also were increased with the local model (R2=.78)  over the global model 
(R2=.72) . Fourteen of the parameters were found to be spatially non-stationary at the 
95% confidence level, according to a Monte Carlo significance test, where the variance 
of parameter estimates is compared against an experimental distribution (Hope 1968). 
The p-values from this test are shown in Table 1 below, along with global parameter 
coefficients and mean, lower and upper quartile GWR parameter estimates. The 
differences between upper and lower quartiles on most parameters show how variable 
they are across space.

Var Name Coeff Std Err T Stat Lwr Quartile Median Upr Quartile P (H0= stationary)
Intercept 10.787979 0.039974 269.8756 10.457601 10.7445 11.525506 0.000 **

NFMIMPVL 0.000007 0.000000 35.4648 0.000005 6E-06 0.000006 0.210
D2SUBWAY 0.000003 0.000006 0.4362 -0.000172 -2.8E-05 0.000032 0.000 **

D2HIWAY 0.000045 0.000021 2.1824 -0.000019 4.1E-05 0.000211 0.000 **

D2PARK 0.000047 0.000017 2.8358 -0.000163 -4.1E-05 0.000055 0.000 **

ELV -0.002603 0.000229 -11.3732 0.000699 0.0015 0.004242 0.000 **

BATH 0.046810 0.008367 5.5943 0.010501 0.02899 0.049988 0.390
ASBEST -0.026298 0.041685 -0.6309 -0.083831 0 0 0.390
SFH 0.130338 0.020262 6.4325 -0.398552 0.11919 0.213064 0.000 **

YRSOLD 0.000197 0.000273 0.7211 -0.000798 -0.0002 0.000903 0.020 *

MHHI 0.000004 0.000000 12.0501 0.000001 2E-06 0.000003 0.010 **

PVAC -0.531325 0.086270 -6.1589 -0.567788 -0.19903 -0.028381 0.110 *

TREES5 0.058003 0.017272 3.3582 -0.022553 0.01742 0.047081 0.000 **

D2TREES 0.000164 0.000204 0.8056 -0.001819 -0.00032 0.000067 0.000 *

* Test statistic on non-stationarity significant at 95% confidence level
**Test statistic on non-stationarity signficiant at 99% confidence level

GLOBAL MODEL RESULTS LOCAL RESULTS

Table 1. Global and Local (GWR) 
Regression Results The other output of this analysis was an ARC/INFO point file, showing parameters, t statistics and standard errors for each local regression. 

To look for patterns, the t statistics (figures 1-2) and coefficients (figure 3-4) were plotted out for the variables on distance to nearest tree 
(D2TREES) and distance to nearest park (D2PARK). 

Plots of the t statistics showed that there was only a significant relationship between price and attributes for certain areas (large dots are 
significant at the 95% confidence level, small dots are insignificant). For instance, Figure 1 shows there is a significant negative relationship 
between price and distance to nearest trees (indicating the positive value of trees) in the north eastern part of the study area (Roland Park, 
Hampden, Medfield, Homeland), but elsewhere this is not the case. The magnitudes of this relationship can be visualized by looking at the 
coefficients plot in Figure 3, which shows a clear pattern of increasingly negative coefficients towards the northeast. The t statistic on 
distance to nearest park (Figure 2) displays clear spatial patchiness, showing that for the most part parks are capitalized positively 
(coefficient on distance is negative), while in one area in the east (Hampden, Remington) parks are negatively capitalized, and in several 
other areas coefficients are insignificant.   This plot, along with the coefficient plot (Figure 4), shows that houses strongly and positively 
capitalize parks in the south (Washington Village), positively capitalize them to a lesser extent on the west side and in patches in the east, 
and negatively capitalize them in one patch in the east.  The plot for the t statistic and coefficient on the dummy variable for trees within 5 
meters was not given here in the interests of space and because only one area in the south of the city positively capitalized trees within 5 
meters. 
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Figure 1. Plot of T statistics on distance to nearest trees. Large circles 
represent parameters significant at the 95% level

Figure 2. Plot of T statistics on distance to nearest park. Large circles 
represent parameters significant at the 95% level

Figure 3. Plot of coefficient on distance to nearest trees. As figure 1 
shows, not all of those observations are significant

Figure 4. Plot of coefficient on distance to nearest park. As figure 2 
shows, not all of those observations are significant Acknowledgements: This research was made possible through funding from the Baltimore Ecosystem Study (National Science Foundation 

Long-Term Ecological Research program, grant number DEB 9714835) and the US Forest Service

Figure 5. Inverse Distance Weighting Interpolation of coefficient on 
distance to park


